A finite volume scheme for convection-diffusion equations with nonlinear diffusion derived from the Scharfetter-Gummel scheme

نویسنده

  • Marianne Bessemoulin-Chatard
چکیده

Abstract We propose a finite volume scheme for convection-diffusion equations with nonlinear diffusion. Such equations arise in numerous physical contexts. We will particularly focus on the drift-diffusion system for semiconductors and the porous media equation. In these two cases, it is shown that the transient solution converges to a steady-state solution as t tends to infinity. The introduced scheme is an extension of the Scharfetter-Gummel scheme for nonlinear diffusion. It remains valid in the degenerate case and preserves steady-states. We prove the convergence of the scheme in the nondegenerate case. Finally, we present some numerical simulations applied to the two physical models introduced and we underline the efficiency of the scheme to preserve long-time behavior of the solutions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Simulation of Drift-Diffusion Traffic Flow Model

In this study, we present a numerical scheme to solve the drift-diffusion traffic flow model under the steady state. The drift-diffusion traffic flow model consists of a continuity equation and a nonlinear Poisson equation. The continuity equation describes the propagation of density along the road, and the Poisson equation describes the interaction among vehicles. The system equations cannot b...

متن کامل

Numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type

In this paper, we have proposed a numerical method for singularly perturbed  fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and  finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided  in...

متن کامل

Two-grid Method for Characteristics Finite Volume Element of Nonlinear Convection-dominated Diffusion Equations

A characteristics finite volume element discretization technique based on two subspaces is presented for a nonlinear convection-dominated diffusion equations. The solution of a nonlinear system on the fine space is composed of solving one small (nonlinear) system on the coarse space and a linear system on the fine space. Error estimates are derived and numerical experiments are performed to val...

متن کامل

Computational and analytical comparison of flux discretizations for the semiconductor device equations beyond Boltzmann statistics

For a Voronoï finite volume discretization of the van Roosbroeck system with general charge carrier statistics we compare three thermodynamically consistent numerical fluxes known in the literature. We discuss an extension of the Scharfetter-Gummel scheme to non-Boltzmann (e.g. Fermi-Dirac) statistics. It is based on the analytical solution of a two-point boundary value problem obtained by proj...

متن کامل

Control Volume Finite Element Method with Multidimensional Edge Element Scharfetter-Gummel upwinding. Part 1. Formulation

We develop a new formulation of the Control Volume Finite Element Method (CVFEM) with a multidimensional Scharfetter-Gummel (SG) upwinding for the drift-diffusion equations. The formulation uses standard nodal elements for the concentrations and expands the flux in terms of the lowest-order Nedelec H(curl,Ω)-compatible finite element basis. The SG formula is applied to the edges of the elements...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerische Mathematik

دوره 121  شماره 

صفحات  -

تاریخ انتشار 2012